Preview

БИОМЕДИЦИНА

Расширенный поиск

Микрофлюидные технологии в изучении и моделировании гематоэнцефалического барьера

Аннотация

Разработка моделей гематоэнцефалического барьера (ГЭБ) in vitro является актуальной задачей нейробиологии и нейрофармакологии. Все большее значение приобретают модели с использованием технологии микрофлюидики, позволяющие изучать и воспроизводить ключевые события церебрального ангиогенеза, барьерогенеза, механизмы поддержания структурно-функциональной целостности ГЭБ, тестировать препараты с потенциальной нейротропной активностью. В обзоре анализируются современные достижения в разработке микрофлюидных моделей ГЭБ, а также наиболее перспективные технологические решения, обеспечивающие качественно новые возможности в создании и применении моделей in vitro .

Об авторах

А. В. Моргун
НИИ молекулярной медицины и патобиохимии ФГБОУ ВО «Красноярский государственный медицинский университет имени проф. В.Ф. Войно-Ясенецкого» Минздрава России, Красноярск
Россия


В. В. Салмин
НИИ молекулярной медицины и патобиохимии ФГБОУ ВО «Красноярский государственный медицинский университет имени проф. В.Ф. Войно-Ясенецкого» Минздрава России, Красноярск
Россия


Ю. А. Успенская
НИИ молекулярной медицины и патобиохимии ФГБОУ ВО «Красноярский государственный медицинский университет имени проф. В.Ф. Войно-Ясенецкого» Минздрава России, Красноярск
Россия


Е. А. Тепляшина
НИИ молекулярной медицины и патобиохимии ФГБОУ ВО «Красноярский государственный медицинский университет имени проф. В.Ф. Войно-Ясенецкого» Минздрава России, Красноярск
Россия


А. Б. Салмина
НИИ молекулярной медицины и патобиохимии ФГБОУ ВО «Красноярский государственный медицинский университет имени проф. В.Ф. Войно-Ясенецкого» Минздрава России, Красноярск
Россия


Список литературы

1. Микрофлюидные системы для химического анализа / под ред. Ю.А. Золотова, В.Е. Курочкина. - М.: ФИЗМАТЛИТ. 2011. 528 с.

2. Моргун А.В., Кувачева Н.В., Хилажева Е.Д., Пожиленкова Е.А., Таранушенко Т.Е., Медведева Н.Н., Салмина А.Б. Технологии изучения и моделирования гематоэнцефалического барьера // Неврология XXI века: диагностические, лечебные и исследовательские технологии: рук-во для врачей. В 3-х томах / под ред. М.А. Пирадова, С.Н. Иллариошкина, М.М. Танашян. - М.: АТМО. 2015. Т. III. С. 134-166.

3. Achyuta A.K.H., Conway A.J., Crouse R.B., Bannister E.C., Lee R.N., Katnik C.P., Behensky A.A., Cuevas J., Sundaram S.S. A modular approach to create a neurovascular unit-on-a-chip // Lab. Chip. 2013. Vol. 13. P. 542-553.

4. Ando J., Yamamoto K. Effects of shear stress and stretch on endothelial function // Antioxid. Redox Signal. 2011. Vol. 15. № 5. P. 1389-1403.

5. Bhatia S.N., Ingber D.E. Microfluidic organs-on-chips // Nat. Biotechnol. 2014. Vol. 32. No. 8. P. 760-772.

6. Bhattacharjee N., Urrios A., Kang S., Folch A. The upcoming 3D-printing revolution in microfluidics // Lab. Chip. 2016. Vol. 16. No. 10. P. 1720-1742.

7. Bing X., Wen-Qiang D., Jia-Wen L., Yan-Lei H., Liang Y., Chen-Chu Z., Guo-Qiang L., Zhao-Xin L., Jin-Cheng N., Jia-Ru C., Dong W., Su-Ling L., Koji S. High efficiency integration of three-dimensional functional microdevices inside a microfluidic chip by using femtosecond laser multifoci parallel microfabrication // Sci. Rep. 2016. Vol. 6. P. 19989.

8. Booth R., Kim H. Characterization of a microfluidic in vitro model of the blood-brain barrier (mu BBB) // Lab. Chip. 2012. Vol. 12. P. 1784-1792.

9. Booth R., Kim H. Permeability analysis of neuroactive drugs through a dynamic microfluidic in vitro blood-brain barrier model // Annals Biomed. Engineering. 2014. Vol. 42. P. 2379-2391.

10. Booth R., Noh S., Kim H.A. multiple-channel, multiple-assay platform for characterization of full-range shear stress effects on vascular endothelial cells // Lab. Chip. 2014. Vol. 14. P. 1880-1890.

11. Brown J.A., Pensabene V., Markov D.A., Allwardt V., Neely M.D., Mingjian S., Britt C.M., Hoilett O.S., Qing Y., Brewer B.M., Samson P.C., McCawley L.J., May J.M., Webb D.J., Deyu L., Bowman A.B., Reiserer R.S., Wikswo J.P. Recreating blood-brain barrier physiology and structure on chip: A novel neurovascular microfluidic bioreactor // Biomicrofluidics. 2015. Vol. 9. No. 5. P. 1-15.

12. Cao X., Lin H., Muskhelishvili L., Latendresse J., Richter P., Heflich R.H. Tight junction disruption by cadmium in an in vitro human airway tissue model // Respir. Res. 2015. Vol. 16. No. 1. P. 30.

13. Cho H., Seo J.H., Wong K.H., Terasaki Y., Park J., Bong K., Arai K., Lo E.H., Irimia D. Three-dimensional blood-brain barrier model for in vitro studies of neurovascular pathology // Sci. Rep. 2015. Vol. 5. P. 15222.

14. Cucullo L., Hossain M., Puvenna V., Marchi N., Janigro D. The role of shear stress in Blood-Brain Barrier endothelial physiology // BMC Neurosci. 2011. Vol. 12. P. 40.

15. Filipovic N., Ghimire K., Saveljic I., Milosevic Z., Ruegg C. Computational modeling of shear forces and experimental validation of endothelial cell responses in an orbital well shaker system // Comput. Methods Biomech. Biomed. Engin. 2016. Vol. 19. No. 6. P. 581-590.

16. Hellman K., Nielsen P.A., Ek F., Olsson R. An ex vivo model for evaluating blood-brain barrier permeability, efflux, and drug metabolism // ACS Chem. Neurosci. 2016. Vol. 7. No. 5. P. 668-680.

17. Huh D., Matthews B.D., Mammoto A., Montoya-Zavala M., Hsin H.Y., Ingber D.E. Reconstituting organ-level lung functions on a chip // Science. 2010. Vol. 328. P. 1662-1668.

18. Huh D., Torisawa Y.S., Hamilton G.A., Kim H.J., Ingber D.E. Microengineered physiological biomimicry: organs-on-chips // Lab. Chip. 2012. Vol. 12. No. 12. P. 2156-2164.

19. Karimi M., Bahrami S., Mirshekari H., Basri S.M., Nik A.B., Aref A.R., Akbari M., Hamblin M.R. Microfluidic systems for stem cell-based neural tissue engineering // Lab. Chip. 2016. Vol. 16. No. 14. P. 2551-2571.

20. Kim H.J., Huh D., Hamilton G., Ingber D.E. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow // Lab. Chip. 2012. Vol. 12. P. 2165-2174.

21. Kim J.A., Kim H.N., Im S.-K., Chung S., Kang J.Y., Choi N. Collagen-based brain microvasculature model in vitro using three-dimensional printed template // Biomicrofluidics. 2015. Vol. 9. P. 024115.

22. Luni C., Serena E., Elvassore N. Human-on-chip for therapy development and fundamental science // Curr. Opin. Biotechnol. 2014. Vol. 25. P. 45-50.

23. Nedergaard M. Garbage truck of the brain // Science. 2013. Vol. 340. No. 6140. P. 1529-1530.

24. Oh H.J., Shin Y., Chung S., Hwang D.W., Lee D.S. Convective exosome-tracing microfluidics for analysis of cell-non-autonomous neurogenesis // Biomaterials. 2016. Vol. 112. P. 82-94.

25. Prabhakarpandian B., Shen M.C., Nichols J.B., Mills I.R., Sidoryk-Wegrzynowicz M., Aschner M., Pant K. SyM-BBB: a microfluidic blood brain barrier model // Lab. Chip. 2013. Vol. 13. P. 1093-1101.

26. Senutovitch N., Vernetti L., Boltz R., DeBiasio R., Gough A., Taylor D.L. Fluorescent protein biosensors applied to microphysiological systems // Exp. Biol. Med. (Maywood). 2015. Vol. 240. No. 6. P. 795-808.

27. Tourovskaia A., Fauver M., Kramer G., Simonson S., Neumann T. Tissue-engineered microenvironment systems for modeling human vasculature // Exp. Biol. Med. (Maywood). 2014. Vol. 239. No. 9. P. 1264-1271.

28. Uzel S.G., Amadi O.C., Pearl T.M., Lee R.T., So P.T., Kamm R.D. Simultaneous or sequential orthogonal gradient formation in a 3D cell culture microfluidic platform // Small. 2016. Vol. 12. No. 5. P. 612-622.

29. Van der Helm M.W., van der Meer A.D., Eijkel J.C., van den Berg A., Segerink L.I. Microfluidic organ-on-chip technology for blood-brain barrier research // Tissue Barriers. 2016. Vol. 4. No. 1. P. e1142493.

30. Wang J.D., Khafagy el-S., Khanafer K., Takayama S., ElSayed M.E. Organization of endothelial cells, pericytes, and astrocytes into a 3D microfluidic in vitro model of the blood-brain barrier // Mol. Pharm. 2016. Vol. 13. No. 3. P. 895-906.

31. Wang Y.I., Abaci H.E., Shuler M.L. Microfluidic blood-brain barrier model provides in vivo-like barrier properties for drug permeability screening // Biotechnol. Bioeng. 2016. doi: 10.1002/bit.26045.

32. Westein E., van der Meer A.D., Kuijpers M.J.E, Frimat J.P., van den Berg A., Heemskerk J.W.M. Atherosclerotic geometries exacerbate pathological thrombus formation poststenosis in a von Willebrand factor-dependent manner // Proc. Natl. Acad. Sci. 2013. Vol. 110. P. 1357-1362.

33. Wong I.Y., Bhatia S.N., Toner M. Nanotechnology: emerging tools for biology and medicine // Genes Dev. 2013. Vol. 27. No. 22. P. 397-408.

34. Yeon J.H., Na D., Choi K., Ryu S.W., Choi C., Park J.K. Reliable permeability assay system in a microfluidic device mimicking cerebral vasculatures // Biomed. Microdevices. 2012. Vol. 14. P. 1141-1148.

35. Zanotelli M.R., Ardalani H., Zhang J., Hou Z., Nguyen E.H., Swanson S., Nguyen B.K., Bolin J., Elwell A., Bischel L.L., Xie A.W., Stewart R., Beebe D.J., Thomson J.A., Schwartz M.P., Murphy W.L. Stable engineered vascular networks from human induced pluripotent stem cell-derived endothelial cells cultured in synthetic hydrogels // Acta Biomater. 2016. Vol. 35. P. 32-41


Рецензия

Для цитирования:


Моргун А.В., Салмин В.В., Успенская Ю.А., Тепляшина Е.А., Салмина А.Б. Микрофлюидные технологии в изучении и моделировании гематоэнцефалического барьера. БИОМЕДИЦИНА. 2016;(4):22-33.

For citation:


Morgun A.V., Salmin V.V., Uspenskaya Y.A., Teplyashina E.A., Salmina A.B. Microfluidic technologies in studying and modelling the blood-brain barrier. Journal Biomed. 2016;(4):22-33. (In Russ.)

Просмотров: 329


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2074-5982 (Print)
ISSN 2713-0428 (Online)