Preview

Journal Biomed

Advanced search

A new model for the evaluation of selective toxicity of antineoplastic funds in transgenic mice with human genes Nat1hom

Abstract

The toxicity of the drug Cisplatin after intragastric administration was assessed on humanized transgenic mice with human genes Nat1hom . The evaluation was conducted in comparison with mice lines C57BL6/Y ("fast" type of acetylation) and line SHK ("slow" type of acetylation). LD50 for mice Nat1hom amounted to 56,3 mg/kg, for mice of the C57BL6/Y - 35,1 mg/kg, for mice line SHK - 33,7 mg/kg. The death of animals C57BL6/Y and SHK line was observed within 1-6 hours after administration and in mice Nat1hom - a day after the introduction. There were lethargy, lack of exercise, a sharp decline in muscle tone with episodic generalized convulsive episodes, collapsing on its side in animals of all lines closely to lethal condition. The autopsy of the dead animals showed signs of congestive venous plethora of internal organs, edema of the meninges with a single bleeding under the lining of the brain. After administration of Cisplatin at a dose of 45-55 mg/kg in histological research there were detected cerebral edema with signs of acute encephalopathy and changes in the myocardium, which indicate the early development of acute heart failure. Venous plethora manifested in all internal organs and in the brain. Lower level of toxicity of Cisplatin in mice with human genes Nat1hom, authors explain the presence of the human gene with the "fast" type of acetylation. It is concluded that in the metabolism and detoxification of Cisplatin, as well as reducing its toxicity, more than 60% N-acetyltransferase processes. The creation of transgenic humanized mice can be based on the use of CRISPR/Cas9 technology. Proposed a new model of humanized transgenic mice with the gene Nat1hom for preclinical researches of anticancer drugs.

About the Authors

N. N. Karkischenko
ФГБУН «Научный центр биомедицинских технологий ФМБА России»
Russian Federation


G. D. Kapanadze
ФГБУН «Научный центр биомедицинских технологий ФМБА России»
Russian Federation


N. V. Petrova
ФГБУН «Научный центр биомедицинских технологий ФМБА России»
Russian Federation


References

1. Альберт А. Избирательная токсичность. Физико-химические основы терапии. Т. 1. - М.: Медицина. 1989. 400 с.

2. ГОСТ 53434-2009 от 02.12.2009 «Принципы надлежащей лабораторной практики (GLP)».

3. Каркищенко В.Н., Мартынов В.В. Фармакология, генополиморфизм и клонирование генов NAT у человека и животных-моделей // Биомедицина. 2006. № 4. С. 85.

4. Каркищенко Н.Н. Альтернативы биомедицины. Т. 1. Основы биомедицины и фармакомоделирования. - М.: Изд-во ВПК. 2007. 320 с.

5. Каркищенко Н.Н. Альтернативы биомедицины. Т. 2. Классика и альтернативы фармакотоксикологии. - М.: Межакадемическое изд-во ВПК. 2007. 448 с.

6. Каркищенко Н.Н. Основы биомоделирования. - М.: Межакадемическое изд-во ВПК. 2004. 607 с.

7. Каркищенко Н.Н., Петрова Н.В., Слободенюк В.В. Высокоспецифичные видовые праймеры к генам Nat1 и Nat2 для сравнительных исследований у человека и лабораторных животных // Биомедицина. 2014. № 2. С. 4-16.

8. Каркищенко Н.Н., Рябых В.П., Каркищенко В.Н., Колоскова Е.М. Создание гуманизированных мышей для фармакотоксикологических исследований (успехи, неудачи и перспективы) // Биомедицина. 2014. № 4. С. 4-23.

9. Методические указания по изучению общетоксического действия фармакологических веществ: В кн. «Руководство по экспериментальному (доклиническому) изучению новых фармакологических веществ. - М.: Медицина. 2005. С. 41-53.

10. Правила доклинической оценки безопасности фармакологических средств (GLP). - РД 31,5-126-91. - М., 1992.

11. Руководство по лабораторным животным и альтернативным моделям в биомедицинских исследованиях / под ред. Н.Н. Каркищенко, С.В. Грачева. - М.: Профиль-2С. 2010. 358 с.

12. Руководство по проведению доклинических исследований лекарственных средств / под ред. Миронова А.Н. - М.: Гриф и К. 2012.

13. Федеральный закон от 12.04.2010 № 61-ФЗ «Об обращении лекарственных средств».

14. Badawi A.F., Hirvonen A., Bell D.A., Lang N.P., Kadlubar F.F. Role of aromatic amineacetyltransferases, NAT1 and NAT2, in carcinogen-DNA adduct formation in the human urinary bladder // CancerRes. 1995. N. 15. P. 5230-5237.

15. Bell D.A., Badawi A.F., Lang N.P., Ilett K.F., Hirvonen A. Polymorphism in the N-acetyltransferase (NAT1) polyadenylation signal: association of the NAT1*10 allele with higher N-acetylation activity in bladder and colon tissue // CancerRes. 1995a. N. 55. P. 5226-5229.

16. Cribb A.E., Grant D.M., Millar M.A., Speilberg S.P. Expression of monomorphic arylamine N-acetyltransferase (NAT1) in human leukocytes // J. Pharmacol. exp. ther. 1991. N. 259. P. 1241-1246.

17. Hickman D., Pope J., Patil S.D., Fakis G., Smelt V.M., Stanley L.A., Payton M.A., Unadkat J.D., Sim E. Expression of arylamine N-acetyltransferase in human intestine // Gut. 1998. N. 42. P. 402-409.

18. Johnson N., Troen A., Fernando S., Warren D., Nagy Z., Smith A.D., Sim E. Investigation of W-acetyltransferase (NAT1) in Alzheimer's disease: identification of a novel NAT1 allelic variant // Eurotox. London. 2000.

19. King C.M., Land S.J., Jones R.F., Debiec-Rychter M., Lee M.S., Wang C.Y. Role of acetyltransferases in the metabolism and carcinogenicity of aromatic amines // Mutat. Res. 1997. N. 376. P. 123-128.

20. Markman M., D'Acquisto R., Iannotti N., et al. Phase-1 trial of high-dose intravenous cisplatin with simultaneous intravenous sodium thiosulfate // J. Cancer Research and Clinical Oncology. 1991. Vol. 117. Iss. 2. P. 151-155.

21. Ohsako S., Deguchi T. Cloning and expression of cDNAs for polymorphic and monomorphic arylamine N-acetyltransferases of human liver // J. Biol. chem. 1990. N. 265. P. 4630-4634.

22. Pacific I.G.M., Benicini C., Rane A. Acetyltransferases in humans: development and tissue distribution // Pharmacology. 1986. N. 32. P. 283-291.

23. Risch A., Smelt V., Lane D., Stanley L.A., van der Slot W., Ward A., Sim E. Arylamine N-acetyltransferase in erythrocytes of cystic fibrosis patients // Pharmacol. toxicol. 1996. N. 78. P. 235-240.

24. Smelt V.A., Upton A., Adjaye J., Payton M.A., Boukouvala S., Johnson S., Mardon H.J., Sim E. Expression of arylamine/V-acetyltransferases in pre-term placentas and in human pre-implantation embryos // Hum. mol. genet. 2000. N. 9. P. 1101-1107.

25. Smelt V.A., Mardon H.J., Sim, E. Placental expression of arylamine N-acetyltransferases: evidence for linkage disequilibrium between NAT1*10 and NAT2*4 alleles of the two human arylamine N-acetyltransferase loci NAT1 and NAT2 // Pharmacol. toxicol. 1999. N. 83. P. 149-157.

26. Stanley L.A., Mills I.G., Sim E. Localization of polymorphic A'-acetyltransferase (NAT2) in tissues of inbred mice // Pharmacogenetics. 1997. N. 7. P. 121-130.

27. Vatsis K.P., Weber W.W. Structural heterogeneity of Caucasian N-acetyltranferase at the NAT1 gene locus // Arch. biochem. biophys. 1993. N. 301. P. 71-76.

28. Weber W.W., Vatsis K.P. Individual variability in p-amino-benzoic acid acetylation by human N-acetyltransferase (NAT1) of peripheral blood // Pharmacogenetics. 1993. N. 3. P. 209-212.


Review

For citations:


Karkischenko N.N., Kapanadze G.D., Petrova N.V. A new model for the evaluation of selective toxicity of antineoplastic funds in transgenic mice with human genes Nat1hom. Journal Biomed. 2015;1(3):4-19. (In Russ.)

Views: 234


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-5982 (Print)
ISSN 2713-0428 (Online)