Preview

Journal Biomed

Advanced search

The influence of helium cold plasma on metabolic and physical-chemical parameters of human blood in vitro

Abstract

The aim of the study was comparative estimation of the changes of oxidative metabolism and crystallogenic properties of blood plasma under processing with cold helium plasma and non-ionized helium flow. We studied the influence of microwave-generating cold plasma on the specimens of whole human blood. The exposure time was 1 and 3 min. Before processing all blood specimens were divided into 5 portions. First portion was control (without any manipulations), second and third portion were treated with cold plasma, fourth and fifth ones were sparged with non-ionized helium flow. In all portions we estimated the parameters of oxidative metabolism and crystallogenic activity. It was stated that cold helium plasma and non-ionized helium modified these parameters under blood processing in vitro. For cold helium plasma this effect was realized by stimulation of antioxidant activity and crystallogenic properties of blood plasma. In opposite, non-ionized helium flow had prooxidant effect and demonstrated the inhibition of biological fluid crystallization. Our data showed that most optimal time for blood processing with cold plasma is 1 min.

About the Authors

A. K. Martusevich
ФГБУ «Приволжский федеральный медицинский исследовательский центр» Минздрава России, Нижний Новгород; Ассоциация российских озонотерапевтов
Russian Federation


A. G. Soloveva
ФГБУ «Приволжский федеральный медицинский исследовательский центр» Минздрава России
Russian Federation


S. Yu. Krasnova
ФГБУ «Приволжский федеральный медицинский исследовательский центр» Минздрава России
Russian Federation


D. V. Yanin
ФГБУ «Приволжский федеральный медицинский исследовательский центр» Минздрава России
Russian Federation


A. G. Galka
ФГБУ «Приволжский федеральный медицинский исследовательский центр» Минздрава России
Russian Federation


A. V. Kostrov
ФИЦ «Институт прикладной физики РАН»
Russian Federation


References

1. Алейник А.Н. Плазменная медицина. - Томск: Изд-во ТПУ, 2011. 45 с.

2. Балданов Б.Б., Ранжуров Ц.Р., Норбоев Ч.Н. и др. Инактивация микроорганизмов в холодной аргоновой плазме атмосферного давления // Вестник ВСГУТУ. 2015. № 4. С. 56-60.

3. Костюк В.А., Потапович А.И. Биорадикалы и биоантиоксиданты. - Минск: БГУ, 2004.

4. Липатов К.В., Сопромадзе М.А., Шехтер А.Б. и др. Применение газового потока, содержащего оксид азота (NO-терапия) в комплексном лечении гнойных ран // Хирургия. 2002. № 2. С. 41-43.

5. Мартусевич А.К. Биокристалломика в молекулярной медицине. - СПб: Издательство СПбГМУ, 2011.

6. Мартусевич А.К., Перетягин С.П., Ванин А.Ф. Исследование некоторых продуктов, генерируемых медицинским аппаратом для получения NO-содержащей холодной плазмы // Медицинская физика. 2012. № 4. С. 80-86.

7. Мартусевич А.К., Перетягин С.П. Модификация дегидратационной структуризации сыворотки крови при ее обработке оксидом азота // Биофизика. 2013. Т. 58. № 6. С. 1038-1042.

8. Сидоркин В.Г., Чулошникова И.А. Метод определения МДА в эритроцитах и плазме крови с помощью тиобарбитуровой кислоты. Авторское свидетельство СССР № 1807410. 1993. Бюлл. № 13.

9. Ющенко А.А., Даудова А.Д., Аюпова А.К., Урляпова Н.Г. Использование морфоструктурной реакции сыворотки крови в токсикологической оценке лекарственных средств // Бюллетень экспериментальной биологии и медицины. 2004. № 7. C. 113-117.

10. Alshraiedeh N.H., Higginbotham S., Flynn P.B., et al. Eradication and phenotypic tolerance of Burkholderia cenocepacia biofilms exposed to atmospheric pressure non-thermal plasma // Int. J. Antimicrob. Agents. 2016. Vol. 47. Pp. 446-450.

11. Alkawareek M.Y., Gorman S.P., Graham W.G., Gilmore, B.F. Potential cellular targets and antibacterial efficacy of atmospheric pressure non-thermal plasma // Int J. Antimicrob. Agents. 2014. Vol. 43. Pp. 154-160.

12. Butscher D., Zimmermann D., et al. Plasma inactivation of bacterial endospores on wheat grains and polymeric model substrates in a dielectric barrier discharge // Food Control. 2016. Vol. 60. Pp. 636-645.

13. Brun P., Pathak S., Castagliuolo I., et al. Helium generated cold plasma finely regulates activation of human fibroblast-like primary cells // Plos ONE. 2014. Vol. 9. No. 8. P. e104397.

14. Dobrynin D., Fridman D., Friedman G., Fridman A. Physical and biological mechanisms of direct plasma interaction with living tissue // New J. Phys. 2009. Vol. 11. Pp. 1-26.

15. Duske K., Wegner K., Donnert M., et al. Comparative in vitro study of different atmospheric pressure plasma jets concerning their antimicrobial potential and cellular reaction // Plasma Process Polym. 2015. Vol. 12. Pp. 1050-1060.

16. Ermolaeva S.A., Varfolomeev A.F., Chernukha M. Yu., et al. Bactericidal effects of non-thermal argon plasma in vitro, in biofilms and in the animal model of infected wounds // J. Med. Microbiol. 2011. Vol. 60. Pp. 75-83.

17. Flynn P.B., Busetti A., Wielogorska E., et al. Potential cellular targets and antibacterial efficacy of atmospheric pressure non-thermal plasma // Sci. Rep. 2016. Vol. 6. P. 26320.

18. Hoffmann C., Berganza C., Zhang J. Cold Atmospheric Plasma: methods of production and application in dentistry and oncology // Medical Gas Research. 2013. Vol. 3. P. 21.

19. Jawaid P., Rehman M.U., Zhao Q.L., et al. Helium-based cold atmospheric plasma-induced reactive oxygen species-mediated apoptotic pathway attenuated by platinum nanoparticles // J. Cell. Mol. Med. 2016. Vol. 20. No. 9. Pp. 1737-1748.

20. Kim S.-M., Kim J.-I. Decomposition of biological macromolecules by plasma generated with helium and oxygen // J. Microbiol. 2006. Vol. 44. No. 4. Pp. 466-471.

21. Kong M.G., Kroesen G., Morfill G., et al. Plasma medicine: an introductory review // New J. Phys. 2009. Vol. 11. P. 115012.

22. Laroussi M. Low-temperature plasmas for medicine? // IEEE Trans. Plasma Sci. 2009. Vol. 37. Pp. 714-725.

23. Lotfy K. Cold atmospheric plasma and oxidative stress: reactive oxygen species vs. antioxidant // Austin Biochem. 2016. Vol. 1. No. 1. P. 1001.

24. Scholtz V., et al. Nonthermal plasma - A tool for decontamination and disinfection // Biotechnol. Adv. 2015. Vol. 33. No. 6. Pp. 1108-1119.

25. Shekhter A.B., Serezhenkov V.A., Rudenko T.G., et al. Beneficial effect of gaseous nitric oxide on the healing of skin wounds // Nitric oxide. 2005. Vol. 12. Pp. 210-219.

26. Stoffels E., Sakiyama Y., Graves D.B. Cold atmospheric plasma: charged species and their interactions with cells and tissues // IEEE Trans. Plasma Sci. 2008. Vol. 36. Pp. 1441-1457.

27. Wiegand C., Fink S., Beier O., et al. Dose- and Time-Dependent Cellular Effects of Cold Atmospheric Pressure Plasma Evaluated in 3D Skin Models // Skin Pharmacol. Physiol. 2016. Vol. 29. Pp. 257-265.

28. Aleinik A.N. Plazmennaya meditsina [Plasma medicine]. - Tomsk: Izdatelstvo TPU, 2011. 45 p. (In Russian).

29. Baldanov B.B., Ranzhurov Ts.R., Norboev Ch.N., et al. Inaktivatsiya mikroorganizmov v kholodnoy argonovoy plazme atmosfernogo davleniya [Inactivation of microorganisms in cold argon atmospheric plasma]. Vestnik VSGUTU [Bulletin of the East-Siberian State University of Technology and Management]. 2015. No. 4. Pp. 56-60. (In Russian).

30. Kostyuk V.A., Potapovich A.I. Bioradikaly i bioantioksidanty [Bioradicals and antioxidants]. Minsk: BGU. 2004. (In Russian).

31. Lipatov K.V., Sopromadze M.A., Shehter A.B., et al. Primenenie gazovogo potoka, soderzhashhego oksid azota (NO-terapija) v kompleksnom lechenii gnojnyh ran [The use of gas flow is containing nitric oxide (NO-therapy) in complex treatment of purulent wounds]. Chirurgiya [Surgery]. 2002. No. 2. Pp. 41-43. (In Russian).

32. Martusevich A.K. Biokristallomika v molekulyarnoy meditsine [Biocrystallomics in molecular medicine]. Saint-Petersburg: Izdatelstvo SPbGMU. 2011. (In Russian).

33. Martusevich A.K., Peretjagin S.P., Vanin A.F. Issledovanie nekotoryh produktov, generiruemyh medicinskim apparatom dlja poluchenija NO-soderzhashhej holodnoj plazmy [Study of some products is generating with medical device for producing of NO-containing cold plasma]. Meditsinskaya fizika [Medical Physics]. 2012. No. 4. Pp. 80-86. (In Russian).

34. Martusevich A.K., Peretyagin S.P. Modifikatsiya degidratatsionnoy strukturizatsii syvorotki krovi pri ee obrabotke oksidom azota [Modification of dehydration structurization of blood serum under its processing with nitric oxide]. Biophysics. 2013. Vol. 58. No. 6. Pp. 1038-1042. (In Russian).

35. Sidorkin V.G., Chuloshnikova I.A. Metod opredeleniya MDA v eritrotsitakh i plazme krovi s pomoshch'yu tiobarbiturovoy kisloty [Method of estimation of malonic dialdehyde in erythrocyte and blood plasma with thiobarbituric acid]. Patent of USSR No. 1807410. 1993. Bulletin No. 13. (In Russian).

36. Yushchenko A.A., Daudova A.D., Ayupova A.K., Urlyapova N.G. Ispol'zovanie morfostrukturnoy reaktsii syvorotki krovi v toksikologicheskoy otsenke lekarstvennykh sredstv [The use of morphostructural response ofblood serum in toxicological estimation of drugs]. Byulleten' eksperimental'noy biologii i meditsiny [Bulletin of Experimental Biology and Medicine]. 2004. No. 7. Pp. 113-117. (In Russian).

37. Alshraiedeh N.H., Higginbotham S., Flynn P.B., et al. Eradication and phenotypic tolerance of Burkholderia cenocepacia biofilms exposed to atmospheric pressure non-thermal plasma. Int. J. Antimicrob. Agents. 2016. Vol. 47. Pp. 446-450.

38. Alkawareek M.Y., Gorman S.P., Graham W.G., Gilmore, B.F. Potential cellular targets and antibacterial efficacy of atmospheric pressure non-thermal plasma. Int J. Antimicrob. Agents. 2014. Vol. 43. Pp. 154-160.

39. Butscher D., Zimmermann D., et al. Plasma inactivation of bacterial endospores on wheat grains and polymeric model substrates in a dielectric barrier discharge. Food Control. 2016. Vol. 60. Pp. 636-645.

40. Brun P., Pathak S., Castagliuolo I., et al. Helium generated cold plasma finely regulates activation of human fibroblast-like primary cells. Plos ONE. 2014. Vol. 9. No. 8. P. e104397.

41. Dobrynin D., Fridman D., Friedman G., Fridman A. Physical and biological mechanisms of direct plasma interaction with living tissue. New J. Phys. 2009. Vol. 11. Pp. 1-26.

42. Duske K., Wegner K., Donnert M., et al. Comparative in vitro study of different atmospheric pressure plasma jets concerning their antimicrobial potential and cellular reaction. Plasma Process Polym. 2015. Vol. 12. Pp. 1050-1060.

43. Ermolaeva S.A., Varfolomeev A.F., Chernukha M. Yu., et al. Bactericidal effects of non-thermal argon plasma in vitro, in biofilms and in the animal model of infected wounds. J. Med. Microbiol. 2011. Vol. 60. Pp. 75-83.

44. Flynn P.B., Busetti A., Wielogorska E., et al. Potential cellular targets and antibacterial efficacy of atmospheric pressure non-thermal plasma. Sci. Rep. 2016. Vol. 6. P. 26320.

45. Hoffmann C., Berganza C., Zhang J. Cold Atmospheric Plasma: methods of production and application in dentistry and oncology. Medical Gas Research. 2013. Vol. 3. P. 21.

46. Jawaid P., Rehman M.U., Zhao Q.L., et al. Helium-based cold atmospheric plasma-induced reactive oxygen species-mediated apoptotic pathway attenuated by platinum nanoparticles. J. Cell. Mol. Med. 2016. Vol. 20. No. 9. Pp. 1737-1748.

47. Kim S.-M., Kim J.-I. Decomposition of biological macromolecules by plasma generated with helium and oxygen. J. Microbiol. 2006. Vol. 44. No. 4. Pp. 466-471.

48. Kong M.G., Kroesen G., Morfill G., et al. Plasma medicine: an introductory review. New J. Phys. 2009. Vol. 11. P. 115012.

49. Laroussi M. Low-temperature plasmas for medicine? IEEE Trans. Plasma Sci. 2009. Vol. 37. Pp. 714-725.

50. Lotfy K. Cold atmospheric plasma and oxidative stress: reactive oxygen species vs. antioxidant. Austin Biochem. 2016. Vol. 1. No. 1. P. 1001.

51. Scholtz V., et al. Nonthermal plasma - A tool for decontamination and disinfection. Biotechnol. Adv. 2015. Vol. 33. No. 6. Pp. 1108-1119.

52. Shekhter A.B., Serezhenkov V.A., Rudenko T.G., et al. Beneficial effect of gaseous nitric oxide on the healing of skin wounds. Nitric oxide. 2005. Vol. 12. Pp. 210-219.

53. Stoffels E., Sakiyama Y., Graves D.B. Cold atmospheric plasma: charged species and their interactions with cells and tissues. IEEE Trans. Plasma Sci. 2008. Vol. 36. Pp. 1441-1457.

54. Wiegand C., Fink S., Beier O., et al. Dose- and Time-Dependent Cellular Effects of Cold Atmospheric Pressure Plasma Evaluated in 3D Skin Models. Skin Pharmacol. Physiol. 2016. Vol. 29. Pp. 257-265.


Review

For citations:


Martusevich A.K., Soloveva A.G., Krasnova S.Yu., Yanin D.V., Galka A.G., Kostrov A.V. The influence of helium cold plasma on metabolic and physical-chemical parameters of human blood in vitro. Journal Biomed. 2018;(2):47-58. (In Russ.)

Views: 376


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-5982 (Print)
ISSN 2713-0428 (Online)